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An experimental observation of phase synchronization is presented for two unidirectionally coupled chaotic
Rössler systems. We show that in this case phase synchronization is connected with generalized synchroniza-
tion which occurs when the coupling strength exceeds a critical value.@S1063-651X~96!03408-3#

PACS number~s!: 05.45.1b, 47.52.1j

The synchronization properties of uni- or bidirectionally
coupled chaotic systems currently is a topic of active re-
search@1–8#. Numerous investigations have shown that there
exist not just a single way how nonlinear systems may oscil-
late in synchrony but different degrees of synchronization.
The strongest notion of synchronization requires that the dif-
ference of the state vectors of the coupled systems converges
to zero in the limitt→`. This definition is most widely used
and will be calledidentical synchronization~IS! in the fol-
lowing. On the other hand it is also possible that the state
vectors of the coupled systems are~asymptotically! related
by some~possibly complicated! function @9–11#. This type
of synchronization is calledgeneralized synchronization
~GS! and occurs, for example, with uni-directionally coupled
systems if the response system is a passive system~i.e., it
possesses only negative conditional Lyapunov exponents!
@11#. Another example of synchronization is the so-called
phase synchronization~PS! that has been discovered for cha-
otic systems only recently by Rosenblumet al. @12#. In order
to describe this phenomenon a suitable phase variable has to
be defined for the systems of interest. This can be done heu-
ristically for strange attractors that spiral around some par-
ticular point~or hole! in state space like the Ro¨ssler attractor
shown in Fig. 1. In such a case, a phase anglef(t) can be
defined that de- or increases monotonically. Phase synchro-
nization of two coupled systems occurs if the difference
uf1(t)2f2(t)u between the corresponding phases is
bounded by some constant@13#. Using the phase angle
f(t) one may define a mean rotation frequency

V5 limt→`

f~ t !

t
. ~1!

In the case of PS, this mean rotation frequency is the same
for the drive and the response system, i.e., also for chaotic
systems PS leads to the frequency entrainment known from
coupled periodic oscillations. Note that PS does not imply
IS, i.e., the amplitudes of both systems can be completely
uncorrelated@12#.

In the following we present an experimental observation
of PS and show that in this case PS is a consequence of GS.
Furthermore, we show how PS manifests itself in the power
spectrum. The experimental system consists of two unidirec-

tionally coupled Ro¨ssler systems~2! and ~3! that have been
implemented on an analog computer:

a ẋ1521x1~x224!,

a ẋ252x12v1x3 , ~2!

a ẋ35v1x210.412x3 ,

a ẏ1521y1~y224!,

a ẏ252y12v2y3 , ~3!

a ẏ35v2y210.412y31c~x32y3!.

The parametersv151 andv251.1 determine the mean
rotation frequency around the center of the attractors of the
drive and the response system, respectively, anda50.013
gives the parametrization of time due to the hardware of the
analog computer. The attractors have been reconstructed
from time series~16 bit resolution, 1 kHz sampling fre-
quency! of the x2 and they2 variable using the method of
delays and are shown forc50 in Fig. 1. From these recon-
structions the mean rotation frequencies have been extracted
based on time series of 32 k lengths. For the case of no
coupling given in Fig. 1 both rotation frequencies are differ-
ent due to the different parametersv151 andv251.1 in
Eqs. ~2! and ~3!. This difference still exists for sufficiently
small values of the coupling parameterc as can be seen in

FIG. 1. Delay reconstruction of the attractors of the drive~a!
and the response system~b! given by Eqs.~2! and~3!, respectively.
Both time series were generated experimentally using an analog
computer. The mean rotation frequencies areV1511.82 Hz~a! and
V2513.62 Hz~b!.
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Fig. 2 where the mean rotation frequenciesV1 ~dashed! and
V2 ~solid! are plotted vsc. At c'0.18 the response system
undergoes a transition to a new phase synchronized state
where the mean rotation frequencies of the drive and the
response coincide.

Figure 3 shows the phase differenceDf5f12f2 as a
function of time for different values of the coupling constant
c. For small coupling (c50.1) Df increases almost linearly
in time. As soon as PS occursDf undergoes a bounded
chaotic oscillation (c50.2).

Phase synchronization can also be observed in the power
spectrum of the response system as shown in Fig. 4. The
main spectral components given by the dark lines move to
the dominant frequencies of the drive that are shown in the
power spectrum plotted in the bar on the right-hand side. The
frequency entrainment is clearly visible, but the threshold
value for PS cannot be uniquely determined from the spec-
trum.

We shall now discuss the mechanism underlying the phe-
nomenon of phase synchronization. Consider again the equa-
tions ~3! of the response system. If the coupling constantc is
increased starting from zero a new term2cy3 is introduced
that makes this system a passive system forc.0.18. We
have checked this numerically by computing the largest con-
ditional Lyapunov exponentl1

c as a function ofc. As can be
seen in Fig. 5l1

c is negative forc.0.18. This means that the
response system becomes a passive system and generalized
synchronization occurs@11#, i.e., asymptotically fort→` the
states of the response system are a function of the states of
the drive system. Due to this strong relation the mean values

of topological quantities like the rotation around a hole or
singularity in the attractor have to be the same. The oscilla-
tions of the amplitudes may be linearly uncorrelated due to
the possibly complicated structure of this nonlinear function,
but the phase differences are bounded.

To check for which values of the coupling parameterc
GS occurred in our experiment we applied the method of
nearest neighbors@10,14# to detect the existence of a con-
tinuous function relating states of the drive to states of the
response@15#. The states of drive and response were recon-
structed fromx2 andy2, respectively, in a three-dimensional
state space with a delay oft l50.02. If the reconstructed
states un5@y2(tn),y2(tn21),y2(tn22)# of the response
(tn5ntl) are given as a continuous functionh(vn) of the
statesvn5@x2(tn),x2(tn21),x2(tn22)# of the drive, then any
neighboring states ofun are mapped to neighbors ofvn. As a
numerical indicator for the existence of a continuous func-
tion we have selected the nearest neigborunn of un for
n51, . . . ,N and have computed the average distance of the
corresponding image pointsvn andvnn. This mean distance
of images of nearest neigbors was normalized by the average
distanced of randomly chosen states of the response system:

d5
1

Nd (
n51

N

ivn2vnni . ~4!

The result of this continuity test is plotted in Fig. 6 vs the
coupling constantc.

FIG. 2. Mean rotation frequenciesV1 ~dashed! andV2 ~solid!
in Hz vs the coupling parameterc. For c.0.18 phase synchroniza-
tion occurs and both rotation frequencies coincide.

FIG. 3. Phase differenceDf5f12f2 vs time for two repre-
sentative cases:c50.1, no PS;c50.2, PS.

FIG. 4. Power spectrum~frequency axis vertical in Hz, ampli-
tudes gray scaled! of the response system~left! and the drive~right!
vs coupling parameterc.

FIG. 5. Largest conditional Lyapunov exponentl1
c of the re-

sponse system~3! vs coupling constantc. For c.0.18,l1
c,0 and

the response system is passive.
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As can be seen nearc50.18 a transition from 1 to 0 takes
place indicating the occurrence of GS. This transition, how-
ever, is rather smooth compared to Fig. 2. We conjecture that
this is due to the fact that the functionh is in general quite
complicated if the response system is only weakly passive,
i.e., near the threshold value of the coupling@16#. Whenc is
increased further the term2cy3 in Eq. ~3! leads to a more
and more stable system and the functionh becomes
smoother. Of course, the smoother the functionh the more

close neighbors of the drive are mapped to close neighbors
of the response. Tests for PS thus provide a more sensitive
indicator for GS than nearest neighbors methods in those
cases where they may be applied.

To conclude, we have presented an experimental observa-
tion of phase synchronization and generalized synchroniza-
tion for a system of two unidirectionally coupled Ro¨ssler
systems. In this case, a close relation between phase synchro-
nization and generalized synchronization has been estab-
lished with interesting consequences for both PS and GS. In
general GS leads always to PS if one can define a suitable
phase variable. On the other hand, PS may occur even in
cases where the coupled systems show no GS, i.e., GS is the
stronger property. We hope that these results stimulate fur-
ther research on the details of the relation between GS, PS
and other types of synchronization in uni-directionally as
well as bidirectionally coupled systems.
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FIG. 6. Nearest neighbors test for GS applied to the experimen-
tal data. Plotted is the average distanced defined in Eq.~4! vs c.
Nearc50.18 the quantityd decreases indicating the occurrence of
GS.
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